logo

Verlag der Technischen Universität Graz

 Die TU Graz  Fakultäten  Studien  Forschung  Institute 

  • About Us
  • News
  • Cooperations
  • Bookshop
  • Publishing
  • Legal Matters
    • AGB
    • Privacy Policy
    • Publisher
  • de
  • en
Matthias Ellmer
Contributions to GRACE Gravity Field Recovery

Improvements in Dynamic Orbit Integration Stochastic Modelling of the Antenna Offset Correction, and Co-Estimation of Satellite Orientations

Issue: Open Access E-Book
ISBN: 978-3-85125-646-8
Language: Englisch
Release date: December 2018
Series: Monographic Series TU Graz / Geodesy, Issue 1

Download PDF

Time series of global GRACE-derived surface mass variations have become an invaluable data source in the field of Earth system science. Prominent examples of subject areas that have particularly benefited from GRACE data are the study of the continental hydrological cycle, the cryosphere, and the global ocean mass balance. The work presented within this thesis is part of the community-wide effort to improve the quality of global gravity field solutions based on GRACE satellite-to-satellite tracking observations. Specifically, it is part of and builds on the ITSG-Grace2016 series of gravity field solutions.

The research within this thesis is divided into three main subjects: the study of numerical effects in the dynamic orbit integration necessary in computing GRACE gravity fields; the description and rigorous evaluation of the effect of the spacecraft orientation uncertainty on a correction applied to the GRACE inter-satellite ranging observable; and the co-estimation of improved satellite orientations within the least squares adjustment for the gravity field parameters.

Regarding the topic of dynamic orbits, a modified Encke approach is introduced which allows for the integration of dynamic orbits at a numerical resolution that is shown to be sufficient for GRACE-FO processing. To this end, the classical osculating Encke ellipse is replaced with a rigorously optimized reference ellipse parametrised in equinoctial elements. The dynamic orbit integrated based on this algorithm and parametrisation is shown to exhaust machine precision over a large part of the resulting orbits’ frequency spectrum.

Complete covariance matrices for the satellite orientation are propagated to the GRACE KBR antenna offset correction. The propagated covariance matrices describe the non-stationary contribution of noise in the satellite orientation observations on the correction applied to the inter-satellite ranging observations. This information is incorporated into the estimation of a complete stochastic model for the inter-satellite ranging observations, which is computed anew for each month of data. The improved stochastic model better describes the noise found in real observations, and can thus contribute in the determination of better gravity field solutions.

The covariance information for the satellite orientation is further used in the co-estimation of improved orientation parameters in the least squares adjustment for the gravity field parameters. Departing from the assumption of error-free and fixed satellite orientations leads to a reduction in temporal variability of the recovered gravity fields over the oceans. This methodology further improves estimates of the KBR antenna phase centre coordinates.

  • Description
Creative Commons Licence:

This work is licensed under the Creative Commons Attribution License 4.0 (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/


This entry is only available in German

Time series of global GRACE-derived surface mass variations have become an invaluable data source in the field of Earth system science. Prominent examples of subject areas that have particularly benefited from GRACE data are the study of the continental hydrological cycle, the cryosphere, and the global ocean mass balance. The work presented within this thesis is part of the community-wide effort to improve the quality of global gravity field solutions based on GRACE satellite-to-satellite tracking observations. Specifically, it is part of and builds on the ITSG-Grace2016 series of gravity field solutions.

The research within this thesis is divided into three main subjects: the study of numerical effects in the dynamic orbit integration necessary in computing GRACE gravity fields; the description and rigorous evaluation of the effect of the spacecraft orientation uncertainty on a correction applied to the GRACE inter-satellite ranging observable; and the co-estimation of improved satellite orientations within the least squares adjustment for the gravity field parameters.

Regarding the topic of dynamic orbits, a modified Encke approach is introduced which allows for the integration of dynamic orbits at a numerical resolution that is shown to be sufficient for GRACE-FO processing. To this end, the classical osculating Encke ellipse is replaced with a rigorously optimized reference ellipse parametrised in equinoctial elements. The dynamic orbit integrated based on this algorithm and parametrisation is shown to exhaust machine precision over a large part of the resulting orbits’ frequency spectrum.

Complete covariance matrices for the satellite orientation are propagated to the GRACE KBR antenna offset correction. The propagated covariance matrices describe the non-stationary contribution of noise in the satellite orientation observations on the correction applied to the inter-satellite ranging observations. This information is incorporated into the estimation of a complete stochastic model for the inter-satellite ranging observations, which is computed anew for each month of data. The improved stochastic model better describes the noise found in real observations, and can thus contribute in the determination of better gravity field solutions.

The covariance information for the satellite orientation is further used in the co-estimation of improved orientation parameters in the least squares adjustment for the gravity field parameters. Departing from the assumption of error-free and fixed satellite orientations leads to a reduction in temporal variability of the recovered gravity fields over the oceans. This methodology further improves estimates of the KBR antenna phase centre coordinates.

These could also be of interest to you

  • Raphael Watschinger

    Fast space-time boundary element methods for the heat equation

    € 36.00 Add to cart
  • Raphael Watschinger

    Fast space-time boundary element methods for the heat equation

    OPEN ACCESS E-BOOK

    Read more
  • Saniya Behzadpour

    Assessment and mitigation of systematic errors in GRACE and GRACE-FO observations

    OPEN ACCESS E-BOOK

    Read more
  • Peter Schlosser

    Superoscillations and their Schrödinger time evolution

    € 36.00 Add to cart
  • Catalog
    • Architecture
    • Civil Engineering Sciences
    • Electrical and Information Engineering
    • Computer Science and Biomedical Engineering
    • Interdisciplinary
    • Mechanical Engineering and Economic Sciences
    • Mathematics, Physics and Geodesy
    • Technical Chemistry, Chemical and Process Engineering, Biotechnology
  • New releases
  • Open Access publications
  • Enhanced e-books
  • Series
    • Akademische Reden an der Technischen Universität Graz
    • Arbeitshilfen für die Praxis
    • Archiv und Bibliothek
    • Betonkolloquium
    • Buddhist Architecture in the Western Himalayas
    • BWL Schriftenreihe
    • Electrical Power Systems
    • Fachbücher Planung und Bau
    • Facts & Figures
    • Festschriften TU Graz
    • Forschungsreihe IBBW
    • Forum Technik und Gesellschaft
    • Geodesy
    • Immersive Learning Research Network Conference; Workshop, short papers, poster
    • Institut für Gebäudelehre Jahrbuch
    • International Brain-Computer Interface (BCI) Meeting
    • LM.VM.2014
    • Logistik Werkstatt Graz
    • Materialien zu Schwerpunkten am Institut für Gebäudelehre
    • Mathematical Modelling of Weld Phenomena
    • Monographic Series TU Graz
    • Monographic Series TU Graz|Advanced Materials Science
    • Monographic Series TU Graz|Computation in Engineering and Science
    • Monographic Series TU Graz|Production Science and Management
    • Monographic Series TU Graz|Railway Research
    • Monographic Series TU Graz|Reihe Fahrzeugtechnik
    • Monographic Series TU Graz|Schriftenreihe des Instituts Betonbau
    • Monographic Series TU Graz|Structural Analysis
    • Monographic Series TU Graz|Techno- und sozioökonomisch orientierte Betriebswirtschaft
    • Monographic Series TU Graz|Technoökonomie und industrielles Management
    • Monographic Series TU Graz|Timber Engineering & Technology
    • November Talks
    • Proceedings of the International Brain-Computer Interface
    • Schriftenreihe des Instituts für Baubetrieb und Bauwirtschaft
    • Schriftenreihe des Instituts für Straßen- und Verkehrswesen
    • Schriftenreihe des Instituts für Wohnbau der TU Graz
    • Schriftenreihe zur Wasserwirtschaft
    • Science, Technology and Society online
    • Seminarreihe Bauunternehmensführung
    • Studien zur Architektur | TU Graz
    • Textbook Series
    • Transform Industry: Guiding the transformation of SMEs
    • TU Graz Jahresbericht | Annual report
    • TU Graz people
    • TU Graz Research
    • VKM-THD Mitteilungen; IVT-Mitteilungen ab Bd. 100
  • Authors
  • Sale

Contact

Verlag der
Technischen Universität Graz

Technikerstraße 4
8010 Graz, Österreich
UID(VAT) ATU 57477929

contact person

Gabriele Groß
Tel.: +43(0)316 873 6157
E-Mail: verlag [ at ] tugraz.at


back to TU© 2025 TUGraz | powered by
Accept All Only accept necessary cookies
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.You can read more in our Privacy Police
Cookie Settings
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
immer aktiv

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDauerBeschreibung
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
qtrans_front_language1 yearThis cookie is set by qTranslate WordPress plugin. The cookie is used to manage the preferred language of the visitor.
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
woocommerce_cart_hashsessionThis cookie is set by WooCommerce. The cookie helps WooCommerce determine when cart contents/data changes.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

CookieDauerBeschreibung
_pk_id1 year 27 daysRequired for the operation of Matomo, an analysis tool that tracks and analyzes user behavior.
_pk_ref13 monthsRequired for the operation of Matomo, an analysis tool that tracks and analyzes user behavior.
_pk_ses30 minutesRequired for the operation of Matomo, an analysis tool that tracks and analyzes user behavior.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

CookieDauerBeschreibung
yt-remote-connected-devicesneverNo description available.
yt-remote-device-idneverNo description available.

SPEICHERN & AKZEPTIEREN
Unterstützt von CookieYes Logo